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Figure 1. Given a sketch and a text-prompt, our method uses the sketch to guide a pretrained text-to-image diffusion model during inference
time. The method allows producing diverse results that correspond to the text-prompt and follow the spatial layout of the sketch.

Abstract

Text-to-Image models have introduced a remarkable leap
in the evolution of machine learning, demonstrating high-
quality synthesis of images from a given text-prompt. How-
ever, these powerful pretrained models still lack control
handles that can guide spatial properties of the synthesized
images. In this work, we introduce a universal approach
to guide a pretrained text-to-image diffusion model, with a
spatial map from another domain (e.g., sketch) during in-
ference time. Unlike previous works, our method does not
require to train a dedicated model or a specialized encoder
for the task.

Our key idea is to train a Latent Guidance Predictor
(LGP) - a small, per-pixel, Multi-Layer Perceptron (MLP)
that maps latent features of noisy images to spatial maps,
where the deep features are extracted from the core Denois-
ing Diffusion Probabilistic Model (DDPM) network. The
LGP is trained only on a few thousand images and consti-
tutes a differential guiding map predictor, over which the
loss is computed and propagated back to push the interme-
diate images to agree with the spatial map. The per-pixel
training offers flexibility and locality which allows the tech-
nique to perform well on out-of-domain sketches, including
free-hand style drawings. We take a particular focus on the
sketch-to-image translation task, revealing a robust and ex-
pressive way to generate images that follow the guidance of
a sketch of arbitrary style or domain.

Performed this work while working at Google.

1. Introduction

Large text-to-image diffusion models [26, 28, 31] have
been an inspiring tool for content creation and editing, en-
abling synthesis of diverse images with unprecedented qual-
ity that follow a given text-prompt. Despite the semantic
guidance provided by the text-prompt, these models still
lack intuitive control handles that can guide spatial proper-
ties of the synthesized images. In particular, guiding a per-
tained text-to-image diffusion model during inference with
a spatial map from another domain, such as sketch, is yet an
open challenge.

A possible attempt is by training a dedicated encoder to
map the guiding image into the latent space of the pretrained
unconditional diffusion model [34]. The trained encoder,
however, performs well in-domain, but struggles with out-
of-domain free-hand sketches.

In this work, we introduce a generic approach to guide
the inference process of a pretrained text-to-image diffusion
model with a spatial map. Our key idea is to use a small
multi-layer perceptron (MLP) network that is trained to map
latent features of noisy images to spatial maps, where the
latent features are extracted from the core network of the
diffusion model. The trained MLP serves as a latent guid-
ance predictor, over which the loss with a target spatial map
is computed and propagated back to push the intermediate
image to agree with the map.

The latent guidance predictor is trained in a self-
supervised fashion and learns to translate features of images
with different noise levels into encoded spatial maps, where
the noise scheduling corresponds to the noise scheduling of



the diffusion process. Importantly, the latent guidance pre-
dictor is trained, and operates independently, on each latent
pixel in the latent space, rather than on the whole image.
Hence, it is sufficient to train it with a few thousand im-
ages only, which is a few orders of magnitude less than the
required amount to train a dedicated image-to-image trans-
lation model. Yet, the latent guidance predictor is generic
and domain-oblivious, in the sense that it can operate on
out-of-domain guiding maps. Hence, our method can ac-
cept free-hand sketches inputs, as in Figure 1, and generate
diverse results that correspond to the text-prompt and follow
the spatial layout of the sketch.

In our experiments, we demonstrate sketch-guided text-
to-image synthesis results on various domains, including
free-hand style drawing. We conduct experiments and abla-
tion studies to analyze the performance of various compo-
nents of our method and present comparisons to other im-
age translation approaches. In addition, we show that our
general framework can be applied to other spatially guided
text-to-image tasks such as saliency-guided inpainting and
horizon control. Throughout our examples in the paper, we
demonstrate that our method can be applied to a rich va-
riety of sketch styles from diverse domains, which is the
key advantage of our approach. Project page: sketch-
guided-diffusion.github.io

2. Related Work

2.1. Image-to-Image Translation

Image-to-image translation has been a long-standing
task in the computer vision domain with a myriad of ex-
plorations and prior works [23]. One common architecture
to perform image translation is conditional generative ad-
versarial networks [18,24,35,38,39] that translate an input
domain to an output domain with a discriminator to bridge
the gap between real images and fake ones. Commonly,
these methods tackle each task independently and use task-
specific datasets and models. Considering the commonality
between tasks, some research efforts [17,20,37] aim to learn
a unified model for diverse translation tasks via multi-task
training.

A special case of image-to-image translation is the task
of sketch-to-photo task [10, 1 1,36]. SketchyGAN [4] uses
edge-preserving image augmentations to train a Generative
Adversarial Network (GAN), Contextual GAN [21] lever-
ages conditional GAN with joint image-sketch representa-
tion. CoGS [12] minimizes the distances between the em-
beddings of the input sketch and the corresponding ground
truth real image in the vector-quantized space of a VQ-
GAN [8]. In contrast, our work leverages a pretrained text-
to-image generative prior of general images and treats the
image translation problems as downstream tasks.

2.2. Diffusion Models

DDPM introduced unprecedented quality of conditional
and unconditional image synthesis. [7, 14, 15], rivaling
GAN-based methods both in visual quality and sampling
diversity. In particular, [30] uses diffusion models to solve
various image translation tasks, but tackles each task inde-
pendently and trains a model from scratch for each task.

More recently, diffusion models have demonstrated un-
precedented quality for text-to-image synthesis and editing
tasks, when large models are trained on pairs of text and
images [13,26,28,29,31]. Our approach builds on these
key advances, and we show how a pretrained text-to-image
diffusion model can be guided by a spatial map from a dif-
ferent domain and serve as a universal generative prior that
facilitates various image translation tasks. Note that mod-
els like Make-a-Scene [9] and eDiffi [2] allow the user a
particular type of control by enabling them to provide a se-
mantic segmentation map to control the composition of the
elements in the synthesized image.

ILVR [5] proposes to iteratively refine the diffusion pro-
cess using a noisy reference image at each time-step dur-
ing inference, enabling control of the amount of high-level
semantics being adapted from the images. In addition,
SDEdit [22] suggests to add noise to the input guiding im-
age, halfway of the forward diffusion process, then denoise
it in a reverse process with a guiding text. Both approaches
enable to guide the model with an image where the guiding
image should lay in the RGB domain and the fidelity to the
spatial property of the guiding image is limited and random.

A closely related approach is the recent work of Wang et
al. [34] that suggests to use a pretrained unconditional diffu-
sion model for various image translation tasks, by training
a specialized, per-task, encoder [27] to map spatial maps
into the latent space of the diffusion model. While their
approach requires dedicated large-scale training to train the
encoder, we use a light weight training (only a few thousand
images are required) of a small MLP which is trained per-
pixel, and thus offers a generalization that extends beyond
the domain defined by the training data.

3. Method

In this section, we describe the main steps of the pro-
posed spatially-guided text-to-image synthesis approach.
Although our method is generic, for the ease of reading,
in the method description we are focused on the sketch-to-
image task, and in Section 4, we show how the very same
approach also works for different tasks.

The key idea of our method is to guide the inference pro-
cess of a pretrained text-to-image diffusion model with an
edge predictor that operates on the internal activations of the
core network of the diffusion model, encouraging the edge
of the synthesized image to follow a reference sketch. Our
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edge predictor is an MLP network, that operates per-pixel,
and is trained to map features of noisy images into spatial
edge maps. The training procedure which is performed only
one time, requires a few thousand images only, and takes
only about an hour on a single GPU.

3.1. Latent Edge Predictor

Our first goal is to train an MLP that guides the image
generation process with a target edge map. The MLP is
trained to map the internal activations of a denoising diffu-
sion model network into spatial edge maps, as depicted in
Figure 2. Inspired by [3], we extract our activations from
a fixed sequence of intermediate layers in the core U-net
network U of the diffusion model. Formally, for an input
tensor w, we denote F(w|c, t) = [l1(w|e,t),. .., In(w]c, t)]
as the concatenated activations of selected internal layers
{li,...,1,}, when w is processed by the network with a
conditioning text-prompt ¢ and noise level ¢. Since activa-
tions from different layers may have different spatial reso-
lution, we resize them to match the spatial dimensions of
the input w and concatenate them alongside the channel di-
mension. The input dimension of the MLP is then the sum
of the number of channels of the selected activations.

Our training corpus D is formed by triplets (x, e, ¢) of an
image, edge map, and a corresponding text caption, respec-
tively. Since our work is implemented with latent diffusion
models (specifically Stable Diffusion), we use the model
encoder E to preprocess the images and the edge maps. In
order to encode the edge map, we convert it into a 3-channel
image by replicating its intensity channel. Thus, in practice
the input tensor is the encoded image with additive Gaus-
sian noise, z; = « - E(x)+pg - &, where 0 < iy, iy < 1 are
the blending scalars that is dictated by the noise scheduling
of the diffusion model, and the MLP is trained to map the
concatenated features F(z¢|c,t) to the encoded edge map
E(e).

In order to consider the noise level of the input, the
MLP also receives ¢ and its positional encoding as sin(27t -
271, 1 = 0,...,9. The output dimension of the MLP is
equal to the number of output channels of E (4 in the case
of Stable Diffusion). Each spatial position (3, j), of the la-
tent pixel F(z|c,t),; is translated to the corresponding la-
tent edge E(e);; by P, thus, the training objective of our
latent edge predictor P is

L= E E P(F(zc,t)ij,t)—E(e)i;]|?,
B oy SIPEGID1sot)~FC]
E~N(0,1)

1)

where P is applied to each latent pixel independently.
Once optimized with the objective £, the model P con-
stitutes a per-spatial location differential predictor of en-
coded edges for an encoded image with noise level £. Due to
the per-pixel nature of the architecture, the MLP is trained
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Figure 2. Training scheme of the Latent Edge Predictor. Given
an image x, we first encode it and add noise to get z;, then pass z;
through the core U-net network of a DDPM, and extract a set of
latent features 1 (z¢|t,c), ..., In(2¢|t,c). Then our Latent Edge
Predictor, which is a per-pixel MLP, is trained to map each pixel
in the concatenated features to the corresponding pixel in the en-
coded edge map e.

to predict edges in a local manner, being agnostic to the do-
main of the image. In addition, it enables training on a rel-
atively small corpus (a few thousand images), in reasonable
training time (One hour on a single A100 GPU).

We next show how such a component can serve as a guid-
ance through the diffusion process.

3.2. Sketch-Guided Text-to-Image Synthesis

Given a sketch image e and a caption ¢, our goal is to
generate a corresponding highly detailed image that follows
the sketch outline. Figure 3 illustrates the proposed latent
features-based guidance described in detail below.
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Figure 3. Sketch-Guided Text-to-Image Synthesis Scheme.
Given an encoded noisy image z;, our method extracts its deep
features during the inference process of a text-to-image diffusion
model, conditioned on a caption c. In each of the denoising steps
t, we aggregate the intermediate model features, and pass them in
our per-pixel Latent Edge Predictor P to predict the encoded edge
map. Then we calculate the gradient of the similarity between the
desired edges w.r.t. the input V., £, and use it as a guidance for
the denoising process that pushes the synthesized image to have
edges close to the target edge map.

We start with a latent image representation z7 sampled
from a uniform Gaussian. Normally, the DDPM synthesis
consists of 7' consecutive denoising steps z; — z;—1 which
constitute the reverse diffusion process, with zy being an
encoded output image. The reverse diffusion process, on
each of the denoising steps t = T, ..., 1, evaluates a den-
sity score gradient estimation €(z, ¢, ¢), and based on it, de-
pending on a sampler algorithm, computes the next sample
zt—1. Notably, the score gradient computation consists of
the forward pass of the main denoising U-net model. Thus,
once the quantity (2, t, ¢) is computed, we may also col-
lect the intermediate activations Iy (z¢]t, ¢), . .., L, (2|t ¢).

Similarly to the training step, we concatenate these acti-
vations to a per-pixel spatial tensor F(z;|c,¢). Then using
the pretrained per-pixel latent edge predictor P, to evaluate
the step-t latent edges prediction E with E; ; = P(F, ;).
We can then calculate the similarity between the current
prediction

L(E, B(e)) = |E — E(e)|. 2)

Similarly to the external classifier gradient guidance in [7],

we evaluate the anti-gradient —V,, £ to bring the edges-
guidance to the diffusion process. Intuitively, this antigra-
dient pushes an intermediate sample z; to have edges closer
to the target. Now we replace the next-step sample predic-
tion z;—1 with 2,1 = 2,1 — a - V., L, where « controls
the edges guidance strength. In practice, the impact of this
gradient depends on its relative magnitude to the original
model step, hence, we normalize it with
llzt — 2z¢—1ll2
S P ©

with 3 being a constant throughout the synthesis process.
Normally 3 takes values of order O(1). Once being syn-
thesized with the guidance from the objective £, the model
produces a natural image aligned with the desired sketch.

In practice, as the final steps of the reverse denoising
process commonly do not affect the geometric layout of the
final generated image, we perform the edge guidance only
for the steps t =T, ..., S > 1, where commonly S = 0.57.
We further discuss the choice of the edge guidance stop step
S in the following section.

4. Experiments

In this section, we discuss the implementation details of
our approach, show sketch-guided text-to-image synthesis
results, conduct experiments and ablation studies to ana-
lyze the performance of various components in our frame-
work, and present comparisons to state-of-the-art image
translation techniques. Figure 4 shows a gallery of results
which demonstrate the ability of our framework to convert
sketches to images with an input text-prompt.

4.1. Implementation details

In all of our experiments, we use Imagenet [6] samples
with their class names as captions (e.g., “shoes”). The cor-
responding edge maps were generated with the edge pre-
diction model of [33] and then thresholded with 0.5. The
latent edge predictor consists of 4 fully-connected layers
with ReLU activations, batch normalization, and hidden di-
mensions 512, 256, 128, 64, and output dimension 4. The
denoising model’s features are taken from 9 different lay-
ers across the network: input block - layers 2, 4, 8, middle
block - layers 0, 1, 2, output block - layers 2, 4, 8. The
training is performed for 3000 steps with Adam optimizer
and batch size 16 which takes less than an hour on a single
A100 GPU.

For inference, we found a set of reliable parameters
for the edge guidance scale 5 = 1.6, guidance stop step
S = 0.5T, and prompt-conditioning equal to 8 (classifier-
free guidance scale in DDPM), though these parameters can
be modified based on the user requirement, to balance be-
tween edge fidelity and realism (see Section 4.3 for more
details).



"Fantasy picture of a
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a hill, blue sky”

Input Sketch

(b)

hill in the winter”

"A photograph ofa  “A wooden house "A wooden house
wooden house on a with trees in a with a garden on
summer time”

a hill at night”

Figure 4. Sketch-Guided Text-to-Image Results. (a) Samples of our method applied to input sketches with different prompts (depicted
above the images). (b) More sketch-to-image results applied with different seeds and captions. It can be seen that our approach successfully
handles objects from different domains. The corresponding captions as well as more results can be found in the supplementary material.

4.2. Comparisons

We compare our method to three types of baseline ap-
proaches: SDEdit [22], pix2pix [18], and PITI [34], each of
which can be used for sketch-to-image synthesis.

A possible attempt to solve the sketch-to-image task with
a pretrained text-to-image diffusion model, is by adding
noise to the input sketch, for ¢ steps in the forward diffu-
sion process, then denoise it in a reverse process with a text
prompt, as suggested in SDEdit [22]. This process enables
to implicitly guide the model with a spatial map. However,
as can be seen in Figure 5, the model expects that the guid-
ing image lays in the RGB domain, hence, resulting in un-
natural, black and white images that follow the input sketch

(text-prompt condition used: “A photograph of a bike made
of wood”). For low values of ¢, the system struggles to add
texture to the model, and when ¢ is increased, the fidelity to
the input sketch significantly decreases.

We next compare our approach to pix2pix [18], and
PITI [34]. Pix2pix is a self-supervised method that is
trained on pairs of images (in this case real images and
their corresponding sketches) using a reconstruction loss
that is enhanced by the adversarial loss that is applied to
pairs. Figure 6 demonstrates that this approach works well
on sketches that lay within the domain of the training data,
for example, realistic shoes sketch, while failing on out-of-
domain hand-drawn sketches.

PITI [34] trains a dedicated encoder to map the guiding
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Figure 5. Applying SDEdit [22] for Sketch-to-Image Transla-
tion. For low starting-¢ values, the system struggles to add col-
ors and texture to the model, while for high starting-¢ values the
fidelity to the input sketch significantly decreases. Text-prompt
used to condition the model: “A photograph of a bike made of
wood”.

Latent guidance

Input sketch (ours)

pix2pix

Figure 6. Comparison to pix2pix [18]. pix2pix works well only
on sketches that lay within the domain of the training data, but fails
on out-of-domain hand-drawn sketches.

image into the latent space of the pretrained unconditional
diffusion model. Figure 7 shows that while PITI performs
well on realistic sketch samples, it struggles to create realis-
tic outputs on free-hand sketches that are out of their train-
ing data domain. In addition, notably, our method provides
significantly more color and style variability compared to
their approach.

4.3. Ablations and Parameter Tuning

We next discuss the different parameters in our system
and their effect on edge fidelity. First, our method demon-
strates a trade-off between the realism level of a generated
image and its alignment with the edges of the target sketch.
The trade-off, which can be controlled by the edge-guidance
scale 3, is depicted in Figure 8. It can be seen that for small
values of 3, we get a more realistic image with details and
textures that cover regions in the entire image, while the
larger value of 3 favors edge alignment but generates less

realistic, piece-wise smooth, results.

We also quantitatively measured the edge-fidelity (Mean
Squared Error between the target edge map and the edges of
the synthesized image), as a function of the guidance stop
step S and depicted the result in Figure 10. As expected, the
quality of edge reconstruction is improved for larger values
of S. However, since high edge fidelity comes at the ex-
pense of realism, we want to find a sweet spot that will en-
able us to balance these two factors. For that, we conducted
an experiment that measures the reconstruction error of our
Latent Edge Predictor for different values of ¢. Figure 11
depicts the loss in Equation 1 as a function of ¢ . Notably,
starting from ¢ ~ 0.57, the error stabilizes, indicating that
for ¢t < 0.57, the model does not receive new information
on the edges. Hence, we use this stabilization point as the
guidance stop S to mitigate the trade-off, which is highly
aligned with the segmentation errors as a function of ¢ that
were reported in [3], that uses latent features of DDPM for
the few-shots semantic image segmentation task.

Since our latent edge predictor works in a local, per-
pixel, manner, we also demonstrate its insensitivity to the
stroke style. We generated samples produced with the same
sketch geometry but with different stroke styles. Figure 9
shows that such a setting yields the same shape, but with
variation in colors and textures. This observation explains
that the stroke style affects the inner synthesis process only,
which accumulates into varying colors of the output image.

5. Applications

We demonstrated our spatially-guided text-to-image
synthesis approach on the sketch-to-image application,
however, our approach is generic and can be applied to dif-
ferent image-to-image translation tasks. In this section, we
show how can we use saliency maps as a guiding map for
text-to-image models, and how it can be used for natural en-
hancement of image regions, as well as background inpaint-
ing [19]. More applications and examples can be found in
the supplementary material.

5.1. Saliency Guidance

Saliency prediction models can be used to detect the
most attention grabbing regions within an image. Recent
works have shown that saliency can be also used as a guid-
ing component for image editing, to reduce distraction in
images [1]. We next show that saliency maps can also
guide text-to-image diffusion models such that the saliency
in specific areas of the generated image is high or low. In
this case, we train our latent guidance predictor to directly
predict the original (not encoded) downsampled saliency
maps from our noisy latent features, and we optimize the
model with the binary cross-entropy loss instead of mean
squared error. To supervise the MLP we use the saliency
model from [25]. We then run the inpainting model with
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Figure 7. Comparison to the state-of-the-art approach of PITI [34]. While PITI performs well on realistic sketch samples, it struggles
to create realistic outputs on free-hand sketches that are out of their training data domain. In addition, notably, our method provides

significantly more color and style variability compared to PITI.

Figure 8. Realism vs Edge-Fidelity. Our method demonstrates
a trade-off between the realism level of a generated image and its
alignment with the edges of the target sketch. The trade-off can be
controlled by the edge-guidance scale .

out-of-mask conditioning, and with an empty prompt. Fig-
ure 13. demonstrates how this technique can be used for
background inpainting. For a given image of a bird and a
mask that covers the bird’s body without the tail, it can be
seen that the model fills the hole with a new bird due to the
semantic hint that the tail provides to it. In contrast, when
the model is guided by a saliency map with low values in
the mask region, it simply removes the bird body and fills
it in with background inpainting as expected. In addition,
we can guide the model to generate high saliency values
within a region. Figure 12 shows how the marked region
is highly illuminated by the sun due to the requirement for
high saliency values in this region. Notably, it is sufficient
to apply the latent guidance predictor for only the first 20%
of the steps.

Input sketches

Figure 9. Stroke Ablation. Samples generated with the same
sketch geometry but different stroke styles, yield the same shape
but with variation in colors and textures. It demonstrates the in-
sensitivity of our approach to the strokes styles.

6. Conclusions

We presented a technique to guide a pre-trained text-
to-image model diffusion model with a spatial map. We
have focused on sketch-guidance, and showed that the tech-
nique can handle well out-of-domain sketches, which may
have a large variety of styles completely different than those
seen in the training time. The gist of the technique is the
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Figure 10. Edge-fidelity as a function of guidance stop step S.
The edge fidelity of the output image (to the target edge map) as a
function of the normalized guidance stopping step S/T.

0.6
Loss stabilization
0.5

0.4

MSE

0.3

1.0 0.8 0.6 0.4 0.2 0.0

high noise t / T low noise

Figure 11. Reconstruction Error of the Latent Edge Predictor.
Reconstruction Error (MSE) as a function on the normalized noise
level t/T of the diffusion process.
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Figure 12. Background Inpainting. Our approach can use a
saliency map to guide the synthesis process of diffusion models
when applied to image inpainting. Given an image (leftmost) and
a mask ((marked in green border), when inpainting is being solved
with the default settings of the model (no guidance) the region may
be filled with foreground subjects based on the semantic hints pro-
vided in the non-masked regions, like the tail of the bird (middle).
In contrast, when the guiding map has low saliency values in the
masked region the completed region contains background values
(rightmost).

per-pixel training of a lightweight MLP component that is
trained on rather small training data. The per-pixel training
acts more like a differential edge-detector and unlike com-
mon per-image training, it is not bound to a particular global
sketching style.

Our technique piggybacks on a pertained text-to-image
model diffusion model and thus offers a strong multi-modal
sketch-guidance technique to users. In a sense, the tech-
nique accepts a rich variety of sketching styles and at the
same time provides a rich variety of outputs, where the user
has intuitive control over the input, and semantic control
over the output.

Y

T .,,e“% “

Figure 13. Saliency-Guided Text-to-Image Synthesis. Given an
image (left) and a saliency map with high values in a specific re-
gion (marked in pink sketch), our model modifies the values within
the image to highly be illuminated by the sun due to the require-
ment for high saliency values in this region.

failed initialization failed scene comprehensmn

Figure 14. Failure cases. The quality of the results may drop
for different initialization, and on complex scenes with mixed and
ambiguous semantics.

Still, our presented technique is only a step toward gain-
ing more control over the output of generative text-image
models. The technique has its limitations. Currently, the
technique is vulnerable to the local style of the strokes.
The technique still struggles with complex and cluttered
sketches as it treats all of the strokes equally without prior-
itizing them according to their saliency or semantics. Also,
since the text-image diffusion model is stochastic, there
might be conflicts between the random seed and the input
sketch, which may lead to a generation of an output that
does not agree well with the sketch. Figure 14 shows repre-
sentative examples where the model fails to provide satisfy-
ing results. The quality of the results may drop for different
initialization, and complex scenes with mixed and ambigu-
ous semantics.

In the future, we would like to advance and improve
the technique by adding a sketch inversion step to yield a
stronger seed to the diffusion process, to better push the
output toward the outline of the input sketch. Another di-
rection is to quickly learn a personalized style using just a
few shots. With a quick training session, the latent sketch
predictor can accommodate the artist’s stroke style.
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Supplementary material

A. Societal Impact

This work provides a powerful tool to convert simple
sketches to detailed, highly realistic images with full control
over style and content. As reported by professional artists
we interviewed, while a simple sketch drawing takes just a
few minutes, a detailed colored picture based on it normally
takes way more time and counts in hours. Thus, this work
can potentially significantly speed up the process of artistic
creation, enabling the democratization of creativity. This
work is inspired by the idea of not replacing an artist, but
giving an artist a tool where Al takes all the technical parts
of the creativity process while leaving the imagination and
inspiration to a human. As the back side of the proposed
method, this also gives a tool for deep-fake and misleading
material creation, this once more stands the challenge be-
fore the community to create the safety mechanism to pre-
vent the generative models to be used in with controversial
intentions.

B. Ablation studies

We start by performing a test to highlight the “out-of-
domain” virtue of the proposed technique. Our Latent Edge
Predictor (LEP) appears to perform well out of its training
domain samples due to its per-pixel training nature. We ex-
amine it with an extremely tiny training set. We train the
edges predictor on the subset of Imagenet validation set,
consisting of the dogs’ classes only. The qualitative eval-
uation and comparison of a model trained with this single-
domain protocol is depicted in Figure 20. Notably, even in
this minimal setup, it still performs reasonably well.

To highlight the importance of using the deep features
of the diffusion network, rather than the intermediate states,
we perform the following experiment. We train an inde-
pendent noise level-conditioned edge predictor that operates
over intermediate states z;, instead of the internal features
of the network. Though this is a straightforward general-
ization of the classifier-guidance [16] technique, we have
not succeeded to train a plausible predictor, as it commonly
collapses to the prediction of empty maps. We argue that
this is due to the fact that edge prediction based on a noisy
image is almost as complex as the original DDPM denois-
ing, which requires a comprehensive image understanding.
Thus, making this approach work might take a significant
computational effort, while our proposed per-pixel training
works out of the box for a rich variety of tasks. In addi-
tion, our approach takes only an hour to train and requires a
limited amount of data.

We also tried to perform guidance over the intermedi-
ate zo predictions of the DDPM model — a more intuitive
input to the edge predictor which operates better on clean



Input sketch 0 Guidance strength ——> 100

Figure 15. Guidance with a model that operates on the inter-
mediate predictions of the denoised image. Generation with low
guidance weight fails to produce an image that matches the sketch,
while high guidance scale produces nearly adversarial images.

images. In each of the denoising steps z; — 2;_1, the
model simultaneously predicts the end result zo = zo(t).
Given this prediction, we compute the current edges pre-
diction as e(E~!(z0(t))) where E~! states for the VQVAE
decoder, and e(-) is the edge prediction model we use for
the edges labeling. Then we guide the denoising process
with the gradients of the similarity of the predicted edges
and target edges. Despite the fact that the edge predictor
operates on a noise-free image, it still struggles to predict
edges from those images that are directly estimated from
fully noisy images, rather than passing through the entire
diffusion process. Hence, the entire process of sketch guid-
ance fails. Figure 15 demonstrates the guidance performed
that way. It can be seen that samples with low guidance
weight fails to produce an image that matches the sketch,
while high guidance weight produces nearly adversarial im-
ages.

C. Additional tests

Leveraging the Multimodality Our approach enables to
use inputs from two different modalities - a spatial sketch
map and a text. Figure 18 visualizes the effect of differ-
ent prompts guidance. While an empty prompt commonly
induces unsatisfying results, a minimal relevant prompt in-
duces plausible generation. Commonly, a detailed descrip-
tion of a sketch subject induces more realistic and detailed
generation (column 4: ”...a cow on a snowy field...”). Once
a prompt contains objects non-presented in the sketch, it
may confuse the generation process (in column 5, ”...a cow
surrounded by trees.”: there are no tree edges presented
in the sketches. While the model succeeded in generat-
ing a proper environment for the second sketch, for the first
sketch it makes the trees to be formed by the sketch subject
shape). Adding an artistic prefix (column 6: ”An oil paint-
ing...”) always induces high alignment with the sketch as
in that case the prompt guidance is less concerned about the
generated image realism. The rightmost column shows con-
flicting text prompt (a dog”). The output is indeed a dog
that admits to the guiding sketch. This clearly highlights the
competence of our edge-guiding technique.

Note that due to stochastic sampling of DDPM, a sin-
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gle sketch and a prompt can generate a variety of different
samples, as shown in Figure 16.

Figure 16. Sampling with different seeds. A variety of different
samples generated with the same sketch and a prompt, but different
seeds. Top sketch prompt: “Marc Chagall drawing of a rooster.”,
bottom sketch prompt: ”A photograph of a mushroom.”

Spatial Labels Guidance We next show another applica-
tion of our generic approach and use a soft [0, 1] grayscale
map to guide the diffusion process, where the maximal and



Generated image
(prompt: “a photograph of a forest”)

Classes probabilities map

p(“day”) = 1

Figure 17. Guidance of a Spatial Label Map. Top rows: im-
ages generated with the class guidance map being equal to ’day”
and “night” (first and second orw, respectively) with the prompt:
”a photograph of an old city”. Bottom: image generation with a
spatially varying soft label map. While the right side of the image
contains a bright sun, there are stars and a black sky on the left
side.

minimal values of the map represent two classes - day and
night. We train our per-pixel MLP to predict whether a
pixel belongs to a day or night scene. Namely, based on
the aggregated noised stacked noised features F(z;|c, t); ;,
the MLP model P predicts either the spatial location (i, j)
on the original encoded image z represent a scene at the
day time, or at the night time. We train P with only 500
day and 500 night images, where all pixels from the one
image (day or night) corresponded to the same class. As
the data is limited, we perform optimization with 1000
steps only. The training scheme remains unchanged ex-
cept for the loss where now we use the cross-entropy be-
tween P(F(z|c,t); ;) and the ground-truth class at the lo-
cation (7, j). We also always use the null prompt for fea-
ture extraction. Similarly, throughout the generation, we
guide with the cross-entropy loss. Now, when the guidance
is performed with a constant 1 or O spatial labeling map,
the produced images are either attributed to day or night
(Figure 17, top). When the labeling map is formed by the
interpolation between labels probabilities, the generated im-
age also interpolates the scene between night and day (Fig-
ure 17, bottom).

The proposed method induces a computational overhead
that is mostly induced by the backpropagation of the edge
prediction loss from the inner features to the input image.
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Once the guidance is applied for the first half of all reverse
diffusion steps, the relative sampling time overhead is ap-
proximately 80%.

D. Models details and data

Dataset: Sketches presented in Figure 4, Figure 3 (third
row), and Figure 14 are provided by the authors. The sketch
presented in Figure 6 (first row) is taken from edge2shoes
dataset [18], and the rest of the samples are taken from
Sketchy dataset [32]. All synthetic quantitative results are
based on Sketchy dataset, and the real numbers are based
on Imagenet with class names used as prompts.

Prompts used in Figure 4 (b): A skull of a monster.”,
”A macro photograph of a snail.”, ”A photograph of a
windmill.”, ”A hot air balloon.”, ”A photograph of a barn
owl.”, ”A photograph of a big wave.” (left in the last row),
”William Turner’s picture of a big wave.”. A prompt used
in Figure 6: A shoe.”. Prompts used in Figure 7: A pho-
tograph of a giraffe.”, ”A photograph of an elephant.”, A
mountain in clouds.”, ”An oil painting of a mountain in
clouds.”, ”A photograph of a green mountain in clouds.”.
Figure 8: ”A photograph of a wooden house on a hill in the
winter.”. Figure 9: ”A hydrant.”.

In all the experiments except inpainting, we use the
Stable Diffusion checkpoint stable-diffusion-v-1-4-original.
As for inpainting, we use the checkpoint stable-diffusion-
inpainting. We always sample in the non-deterministic
mode with 250 reverse diffusion steps.


https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
https://huggingface.co/runwayml/stable-diffusion-inpainting
https://huggingface.co/runwayml/stable-diffusion-inpainting

“A photograph of  “A photograph of
Input sketch <null prompt > “A cow” a white cow standing  a cow surrounded
on a snowy field.” by trees.”

“An oil painting

13 ”
of a cow.” A dog.

Figure 18. The effect of the textual conditioning on the sketch-guided generation. The blue text highlights the subject presented in the
sketch. The rightmost column shows a generation failure case where the prompt not matching the sketch.
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Figure 19. More Samples. Samples of the proposed edge guidance being applied to Sketchy [32] samples generated with the default

9 9 9 99 99 LIR1) e

guidance parameters. We use the classes names as prompts with the prefix ”A photo of”: “’lizard”, “’rabbit”, "racket”, “car”, “pear”, cow”,

“cat”, "hot-air balloon”, “door”, “turtle”, “penguin”, “shark™, “scissors”, "teddy bear”, turtle”, “mouse”, “airplane”, “armor”, ’swan”,

”pizza”, “hermit crab”, "frog”, “chicken”, "fan”. Resampling, prompt-tuning, and guidance parameters tuning may significantly boost the
visual quality of individual samples as well.
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Figure 20. Training the LEP only on a single class vs. various classes Comparison of guidance performed with a LEP model trained on
various Imagenet samples, and only on images corresponding to different dog classes. Notably, due to the per-pixel nature of our training,
even the model trained on a very specific image domain reasonably well generalizes to other domain samples. We use the classes names as

LTI CLEET)

prompts with the prefix ”A photo of”’: “eyeglasses”, “banana”, “hourglass”, “giraffe”, ”chicken” ”snail”, ’teddy bear”, "bicycle”, "frog”,

9 9 LEEY)

“raccoon”, “’songbird”, “butterfly”, “cup”, “fan”.
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